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The Loewner Equation: Maps and Shapes
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An approach called Schramm-Loewner evolution (SLE) provides a new method
for dealing with a wide variety of scale-invariant problems in two dimensions.
This approach is based upon an older method called Loewner Evolution (LE),
which connects analytic and geometrical constructions in the complex plane. In
this paper, the bases of LE and SLE are described and some simple applications
are discussed in relatively non-technical form. A bibliography of the subject is
presented.
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The most exciting concepts in theoretical physics are those that relate
algebraic properties to geometrical ones. Of course, the outstanding
example of this is the geometric meaning of the equations of general rela-
tivity, and their realization in the shapes of possible universes and in black
holes. Other examples abound including the patterns of the paths of
Brownian motion, the forms of percolating clusters, the shapes of snow-
flakes and phase boundaries, and the beautiful fingers of interpenetrating
fluids and of dendrites.

Especially beautiful and important patterns are seen in the case in
which these structures can be very large and fractal, as in a long random
walk or in the critical phenomena which occur near higher order phase
transitions. More than a century of effort has gone into studying the
problems posed by these objects. Much of it has been devoted to figures
in two dimensions. These shapes are varied enough to be interesting, but
relatively easy to characterize and study.

In the last few years, new insights have permitted unexpected progress
in the study of fractal shapes in two dimensions. A new approach has
arisen through analytic function theory and probability theory, and given a
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new way of calculating fractal shapes in critical phenomena, and in other
problems like diffusion limited aggregation (DLA), the theory of random
walks, and of percolation.

1. CONFORMAL MAPS

It all starts with the Riemann mapping theorem which gives a method
for characterizing shapes by using the theory of analytic functions of a
complex variable. High school students know how to characterize a point
(x, y) in two-dimensional space by a complex number z = x+iy. With a
little more thought they can understand how a region & in the z-plane that
region might be mapped into another region £ of the w-plane by the func-
tion w = g(z).

More advanced analysis considers the case in which g is a function
which is analytic and univalent within &. The last property means that dif-
ferent points in £ have different images under the action of g (or that g
does not “glue” points together). In this case it follows that the derivative
of g(z) does not vanish within the region 2. Then the mapping is called
conformal, and it takes the boundary of & into the boundary of £. Thus an
analysis of functions of complex variables automatically connects to a
theory of the shapes of regions and curves in two dimensions.

The Riemann mapping theorem states that any simply connected
region whose boundary has more than one point can be transformed in
an essentially unique manner into any other such region by a conformal
transformation. We shall use the theorem to convert a region of interest,
for example a region contained in the upper half plane, into a reference
region, for example the entire upper half plane, conventionally written as .
To get all the theorems we want, we shall need a few more constraints:
our regions are simply connected and contain the point at infinity. The
mappings take the form

g(@) > z+-+0(z) M

as z goes to infinity.

The conformal mapping functions have a very important composition
property. Let the functions g, and g, respectively map the regions 2 and
2% into the upper half plane. Then the composition of the two g,;(z) =
g5(g4(2)) maps a region 2% which is contained within 2 into the upper
half plane (in the set-theoretic notation 242 = 24\ g ' (# \ 2°®), see Fig. 1
for an illustration). Another composition, giving g =g, g5 g, maps a
subset of 2% into the reference region. Successive iterations give us suc-
cessively “smaller”” regions.
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Fig. 1. Illustration for composition of conformal maps described in the text. The notation
A# \ 2 means the complement of 24 in #. Correspondence of points on the real axis and the
boundary of 242 is shown.

2. LOEWNER EQUATION

To study this situation, Loewner defined families of maps, g,, defined
by a real parameter ¢, which we might call time, and by a real “driving”
function &(¢). The Loewner equation

2
PEREOR @
defines a family of conformal maps w = g,(z) which take a subregion of the
upper half z-plane into the upper half w-plane. Equation (2) is written for a
somewhat arbitrary (but convenient) choice of the time variable, such that
the map g,(z) satisfies the asymptotic condition (1) with a = 2z.

At time zero, g,_, is the identity map which maps 5 into itself. The
boundary curve is the real axis and that too maps into itself. At each sub-
sequent time ¢, g,(z) defines a new mapping-region &, which maps into #.
Equally, the boundary of this region maps into the real axis of the w-plane.

The most important properties of g,(z) arise from the composition
properties of conformal maps. Consider two maps g:(z) and g?(z) gener-
ated respectively by the forcing functions £4(¢7) and £(¢) which exist in the
respectively exist in intervals [0, ¢,] and [0, z;]. Now, write g, = g,"A (2)
and g = gf; (z) for the maps generated by Eq. (2) for each forcing and
consider the composite forcing:

d
E gt(z) =

HOEIH0) for (0<t<t,)

=&81t—t,) for (ty<t<t,+1ty). 3)
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Then the composition rule indicates that the composite forcing generates a
map g, such that by the time ¢, +¢; it is simply

81,41, (2) = 88(84(2)). 4)

Indeed, fix z and calculate g,(z) for 0 < ¢ < ¢, from Eq. (2) using the initial
condition g,_,(z) =z. Then repeat the calculation for ¢, <t < t; with the
initial condition g,_,, (z) = g,(2). The result at ¢ = ¢; is precisely described
by the composition in Eq. (4).

An immediate consequence of this composition rule is that the
mapping sets &, continually get “smaller” as ¢ gets larger. More properly
stated if s is greater than ¢ then 9, contains &,.

In some sense, we can watch the mapping region get smaller. This
happens at time ¢ when some points z.(¢) pass out of the domain of analy-
ticity of g,. From the Loewner equation that will happen as the denomina-
tor in Eq. (2) passes through zero or at the points which obey

8(z.(1) = &(). )

Since £(¢) is real, that is, always on the boundary of s, its pre-image z.(¢)
always sits on the edge of the region &, that is mapped to s by the func-
tion g,(z). If £(¢) is continuous, as time goes on the singularities trace out a
continuous curve in #, which we call simply the trace. The composition
property implies that if a point is in the trace now, it will remain in it for
all subsequent times. The trace is then a permanent path which shows
where the singularities arise and what points have been removed from the
mapping region.

The properties of the bounding curve composed of the trace and the
real axis, are absolutely amazing:

e if £(¢) is smooth enough so that its derivative exists everywhere, the
bounding curve never intersects itself.

* if &(¢) is periodic, the bounding curve is a self-similar object. See
Fig. 2 for an example.

* the curve can intersect itself at finite time only if £(7) is sufficiently
singular. The condition required"” is that for some ¢

ct—1)—4(®)

7

lim

0"

(©6)

goes to a value greater than 4.
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Fig. 2. The upper figure shows the trace for a periodic driving function &(¢) = sin(z). The
trace looks similar at different scales. The trace on the lower figure is driven by &(¢) = ¢ sin(?).

Thus the topological properties of the generated curve are directly, but non-
trivially, related to the analytic properties of the forcing function &(¢).

To see what happens in a specific example choose £(¢) to be a con-
stant, say c, independent of time. Then Eq. (2) has the solution:

&) =c+((z=c)’+4n'"? ()

As we can see in Fig. 3 the singularity at time 7 is at z,(¢) = ¢ +2it"/%. Thus,

the trace is a straight line which extends from z = ¢ to z = ¢+ 2it'/2.

BD E
(2)
e
A B C D E
(b)
boundary line

m mapped region

Fig. 3. This figure shows how a slit in the upper half of the z-plane (part (a)) maps into a
linear boundary in the w-plane (part (b)). Notice that two neighboring points in the z-plane
have images which are far apart in w.
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Fig. 4. Part (a) is a smooth curve produced by a differentiable forcing function. Parts (b)
and (c) show different traces produced by a discontinuous &(¢).

More complex generating functions give much more complex boundary
curves. For example, imagine that at some time, £(¢) has a discontinuous
jump. The boundary then gains a new segment, see Fig. 4, either having
the new curve coming out of the horizontal base or having it branch from
the old segment. On the other hand, if £(¢) varies sufficiently smoothly, the
boundary curve retains the topology shown in Fig. 4a. It is a smooth curve
which is extended further and further as time progresses, but never crosses
itself. A few exact solutions of the Loewner equation were obtained in a
recent paper.®

3. FROM LOEWNER TO CRITICAL PHENOMENA

The years following Loewner’s initial work showed many applications
of complex analytic methods to the study of problems involving fractal or
quasi-fractal objects in the plane.

One major approach was the reformulation by Hastings and Levitov®
of the DLA model originally put forward by Witten and Sander.®’ The
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latter authors considered a step by step process in which an aggregate
composed of many soot particles grew into a large, fractal object. A new
tiny piece of soot would appear far away from the aggregate and undergo
a random walk, ending when the piece touched the aggregate and stuck
on. Iterations of this process made for a very large and interesting object.
Hastings and Levitov represented the addition process by a conformal map
from a circle to a circle with a bump upon it. When such process is iterated
many times, the composition rule for conformal maps produced a conti-
nually growing object. Since the random walk and conformal function both
obey the Laplace equation, DLA can be represented by choosing the addi-
tion point at random. Hence Hastings and Levitov constructed a stochastic
procedure within the general class considered by Loewner. This reformula-
tion might well have spurred people on to think about what would happen
if one combined Loewner and stochasticity. A similar work was done by
Carleson and Makarov® who modelled a deterministic version of the DLA
using what they called “Loewner chains.”

Another major use of analytic function theory for two dimensional
fractals involved noticing that behavior near critical points had many
invariance properties, including invariance under conformal transforma-
tions. According to the work of Polyakov® and others,” the scale
invariance characteristic of behavior near critical points could be quite
naturally generalized to include all non-local shear-free transformations®
which then implied conformal invariance. The conformal field theory
(CFT) built on these ideas was used with spectacular success to analyze
a wide variety of critical problems in two dimensions (2D). This work was
mostly concerned with the behavior of thermodynamic functions and of
local operators like the magnetization. As noted above, conformal methods
were also applied to such problems as Brownian motion, self-avoiding
walks, percolation and DLA since these were all considered to be somehow
close to critical phenomena. Indeed several of these problems were shown
to be limiting cases of the critical models. But, in recent years, work on
critical phenomena slowed down somewhat because it was felt that most of
the leading problems had been investigated.

4. SCHRAMM-LOEWNER EVOLUTION

However, this view has proven wrong. The area of 2D critical phe-
nomena has enjoyed a recent breakthrough. A radically new development,
called the Schramm-Loewner Evolution or SLE (also previously called
“stochastic Loewner evolution”)®!? has provided us new tools and new
questions for criticality in 2D, and also provides us with a new interpreta-
tion of the traditional CFT approach.
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Examples of systems described by SLE include familiar statistical models
—Ising, Potts, O(n) model,—as well as ‘““‘geometric” critical phenomena
like percolation, self-avoiding random walks (polymers), spanning trees
and others. The new description focuses directly on non-local structures
that characterize a given system, be it a boundary of an Ising or percola-
tion cluster, or loops in the O(n) model. This description uses the fact that
all these non-local objects become random curves at a critical point in the
continuum limit, and these curves may be precisely characterized by the
stochastic dynamics which we shall describe in a moment.

This is an exciting development in that SLE complements the earlier
approaches to problems in critical phenomena. For example, the geometric
properties that are derived from SLE, like the Hausdorff dimension of a
random curve, always correspond to some scaling dimension of a local
operator in CFT. It appears that there is a close correspondence between
some CFT’s and the SLE, as discovered by Bauer and Bernard, and
Friedrich and Werner."? However, many questions seem to be more
natural and easier to pose and/or answer in the SLE framework. One of
the challenges of the near future is to extend the overlap between the two
approaches as far as possible and see whether they are really equivalent.

So what is SLE? It is simply the study of the Loewner equation with
stochastic driving, specifically driving by a £(#) which a Gaussian random
variable, obeying the familiar Langevin equations of Brownian motion,

&) &5)) = Kd(1—3) ®)

or equivalently in more integrated form

=& =x |t—sl. (€)

Here x is a dimensionless constant whose value is very important determi-
nant of the behavior. It is usual to refer to SLE at a particular value of x as
SLE,.
It was Schramm’s idea® that one can use Loewner equation to
describe conformally-invariant random curves if one chooses £(¢) to be a
random function that satisfies certain conditions. First, £(¢) must be con-
tinuous with probability one. Secondly, to produce a conformally-invariant
curve, the process &(¢) has to have independent identically distributed
increments, since one can construct the required map g,(z) by iterations of
some infinitesimal identically-distributed conformal maps. Further natural
requirement of the invariance of g,(z) with respect to reflection x+iy —
—x+iy makes the choice of &£(¢) essentially unique: it can only be a scaled
version of the Brownian motion without drift of Eq. (8).
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Fig. 5. Three different traces produced by SLE. This sketch is taken from Bauer and
Bernard “Conformal field theories of stochastic Loewner evolutions,” arXiv:hep-th/0210015.

We have already seen that if we chose £(¢) to be a smooth real-valued
function, the solution g,(z) of Eq. (2) would give a conformal map from #
cut along a segment traced out by a simple, non self-intersecting, curve y.
Similarly, in SLE g gives a map from a &, in # onto s#. This region is #
with some part cut away by the singularities generated in g. The cut out
part might be a simple curve which avoids the real line (for 0 <x <4),
a self-intersecting one (for 4 < x < 8), or a filled in region (for x > 8). For
pictures of these possibilities see Fig. 5. There are theorems and predictions
saying that the trace of the cut-out singularities or the curves which sur-
round the self-intersection trace, or the filled in region gives direct and
useful information about the clusters and other geometrical objects formed
in critical phenomena and other associated scale-invariant processes.

The theorems apply to percolation, the so-called loop-erased random
walks, and the uniform spanning trees, which are related, correspondingly,
to SLE, SLE,, and SLE;. They state essentially that the ensemble of all
the appropriate SLE objects is identical to the conformally-invariant
scaling limit of the critical cluster boundaries for percolation, or of
paths—for loop-erased random walks and the space-filling curves winding
along the uniform spanning trees. It is also known that if self-avoiding
walks have a conformally-invariant continuum limit, this limit must be
described by SLEg;.

The corresponding critical phenomena statements (conjectures) are
equally straightforward. They start by connecting each phase transition
problem with a value of x. For example, the standard critical Ising model is
said to correspond to x = 3. Various k-values are similarly ascribed to the
O(n) model and the g-state Potts model at their critical points via

n=./q=—2cos(4n/x), (10)

where » may be analytically continued to negative values —2 <n <0. The
ensemble of traces or boundaries for the SLE process is argued to be iden-
tical with the ensemble of scaling-limit cluster boundaries in the Potts
model or lines in the O(n) model.
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Cardy"® has suggested that the correlation functions of boundary
operators in critical phenomena could be explicitly calculated by using SLE
methods. One of the first SLE-style calculations was due to Duplantier,®
who was interested in the ensemble of field strengths which would be
realized in the neighborhood of a Potts model or Ising model cluster if that
cluster were a charged conductor. He needed solutions to the Laplace
equation in the exterior of the conductor, but any analytic function auto-
matically provides such solutions. Hence the mapping functions g would
provide the necessary information. The actual determination of multifractal
exponents in ref. 13 was based on results from quantum gravity in 2D. All
these calculations, and many more are new results, unexpectedly available
from SLE methods.

We shall not summarize the many important advances made with
the aid of SLE methods, nor speculate about the likely advances to come.
Instead we simply say that this is a beautiful area of work, begun but not
completed, where statistical physicists may hope to make further important
advances. A bibliography on the SLE and related subjects is included in the
appendix.

A review for physics audience on SLE and its relation to discrete
models by Wouter Kager and Bernard Nienhuis is planned for a later issue
of this journal.

APPENDIX A: REFERENCES ON SLE AND RELATED SUBJECTS
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